CORNING

Corning[®] Laser Durable Grade Calcium Fluoride

Corning/ Advanced Optics January 2024

Laser Durable Grade (LDG CaF₂) Data Sheet

High Quality Calcium Fluoride Optimized for Microlithography and Laser Optics Applications

Corning Advanced Optics is a trusted, premier supplier of calcium fluoride crystal components. For harsh laser exposure levels, or where maximizing optic lifetime and equipment uptime are critical, Corning® LDG CaF₂ is optimized to be the material of choice. Corning offers a range of geometries and finishes, including complex multi-faceted and highly polished parts. With its comprehensive coating engineering expertise, Corning also provides design engineering, fabricating, polishing, and coating capabilities. Let Corning be the supplier of choice for your most complex laser optic requirements.

Advanced Optics

Corning Incorporated Corning, NY 14831 laseroptics@corning.com www.corning.com/advancedoptics

Products

- ·Windows
- Prisms
- ·Lenses
- · Beam Splitters
- · Optical Modules
- Mirrors

Surface Finishes

Industry leading metrology to assure:

- · Low surface roughness (<4 Å) with <10/5
- · Ultra-low sub surface damage
- · Wavefront errors <1/10 wave
- · Surface cleanliness to enable high laser durability

Custom Coatings

- · Anti-Reflective
- · Highly Reflective
- · Partially Reflective
- Low Absorption
- · Protective/Enhanced Durability
- · Custom Solutions Upon Request

CORNING

Corning® LDG CaF₂

Physical and Chemical Properties

78.075 g/mol
Cubic, fluorite type, space group Fm3m
5.462 Angstroms
(111)
3.18 g/cm³ at 25°C
1420°C
9.71 W/(mK) at 25°C
6.76 at 1 MHz

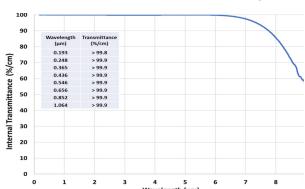
Mechanical and Elastic Properties

Young's Modulus (E)	146 GPa <100>, 89.6 GPa <111>
Shear Modulus (G)	60.4 GPa <100>
Bulk Modulus (K)	84.8 GPa
Poisson's Ratio	0.21 <100>
Elastic Compliance (x 10 ⁻² /GPa)	$S_{11} = 0.6829$ $S_{12} = -0.1448$ $S_{44} = 2.9563$
Elastic Stiffness (x 10 ² GPa)	$C_{11} = 1.653$ $C_{12} = 0.445$ $C_{44} = 0.338$
Knoop Hardness (200 gram load)	156 - 168 kg/mm² (111)

λ (nm)	Spectral Line	Measured 20°C	Measured 25°C	dn/dT x 10 ⁻⁶ K ⁻¹
2326.05		1.42213	1.42208	-9.6
1530.00		1.42614	1.42609	-10.4
1060.00		1.42853	1.42609	-10.2
852.34	[s]	1.43004	1.42999	-10.4
656.45	[C]	1.43247	1.43242	-10.2
644.03	[C']	1.43269	1.43264	-10.1
632.98		1.43290	1.43285	-10.1
592.00		1.43376	1.43371	-10.0
589.30	[D]	1.43382	1.43377	-10.0
587.60	[d]	1.43386	1.43381	-10.0
546.23	[e]	1.43495	1.43490	-9.6
486.30	[F]	1.43702	1.43698	-9.8
480.13	[F']	1.43728	1.43724	-9.8
435.96	[g]	1.43948	1.43943	-9.4
365.12	[i]	1.44490	1.44485	-9.6
334.24		1.44850	1.44845	-8.8
289.44		1.45618	1.45614	-8.4
253.73		1.46600	1.46596	-7.6
248.35		1.46792	1.46789	-7.3
228.87		1.47637	1.47634	-6.6
214.51		1.48457	1.48454	-5.6
206.27		1.49033	1.49030	-5.0
194.23		1.50061	1.50059	-3.8
193.37		1.50144	1.50143	-3.9
184.95		1.51056	1.51055	-3.2

Additional Information

Depending on customer requirements, Corning can provide solutions ranging from crystal blanks to complete turnkey optical packages. Corning can precisely manufacture a wide variety of laser optic components including: windows, prisms, mirrors, plano convex, plano concave, and hemispherical optics. With its comprehensive coating engineering expertise, Corning can customize final optical performance to enhance transmission, reflectivity, and/or laser durability to customer specification in order to provide a comprehensive optical path solution.


Advanced Optics

Corning Incorporated Corning, NY 14831 laseroptics@corning.com www.corning.com/advanced-optics

Additional Properties

Internal Transmittance	> 99.8 %/cm @ 193 nm > 99.9 %/cm @ 248 nm
Stress Birefringence	< 2 nm/cm or < 5 nm/cm (max), [111], measured @ 592 nm
Bubbles/Inclusions	ISO 10110 - 1/1 x 0.02
Orientation	(111) \pm 3° typical, others upon request

Internal Transmittance DUV-VIS-IR Region

