

E-RAN Introduction

Capabilities, Technology, and Deployment

Simple Installation. Quick Deployment. Unmatched Capabilities.

Reliable wireless coverage has evolved from a want to a need for most governments, enterprises, and venues, with service demands increasing every day. Now, the connectivity needs of employees, contractors, guests, and first responders in buildings of all sizes can be cost-efficiently addressed.

The Corning® SpiderCloud® enterprise radio access network (E-RAN), with a broad family of radios, flexible deployment topology, and IP/Ethernet transport, is the key to servicing more locations than ever before. The radio nodes enable unprecedented cellular coverage and capacity through secure IP/IPSec data connections over readily available Ethernet and internet services.

Optimize your network. Learn more about the Corning SpiderCloud solution.

What is an enterprise radio access network (E-RAN)?

An E-RAN system is made up of one services node that manages a group of radio nodes (access points) that are attached to it. All of the radio nodes are powered by Ethernet, which makes them quick and easy to install.

How does E-RAN work?

PoE+-powered radio nodes install on ceiling or wall

Radio nodes connect to services node over Ethernet LAN and internet

Services node connects to operator network over internet

Reliable cellular coverage and capacity inside buildings

Corning Optical Communications E-RAN Introduction | CMA-722-AEN | Page 1

F-RAN Platform

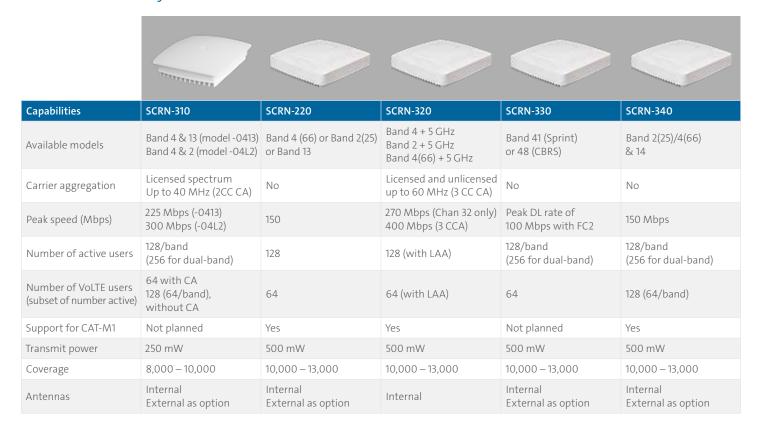
An E-RAN system is made up of one rack-unit-sized services node that manages multiple single-carrier or dual-carrier radio nodes operating in 3G, LTE, and unlicensed spectrum.

Services Node

The services node lies at the heart of the SpiderCloud® E-RAN solution. It ensures that the E-RAN system is easy to deploy and manage and that it delivers the performance mobile operators expect. The services node is access technology agnostic, supporting UMTS, LTE, and LTE-LAA. It orchestrates the self-organizing network (SON) process, controls the operation of different radio nodes during neighbor discovery, gathers information from different radio nodes, and creates optimized neighbor lists based on information received from the neighbor scans.

SON capabilities include:

- Discovering the macro cells in the area along with the internal small cell and Wi-Fi topology.
- Assigning UMTS primary scrambling codes, LTE physical cell identifier, and LAA unlicensed channels.
- Setting maximum transmit power levels.
- Automatically configuring cell neighbor lists to make the system operational.


Radio Nodes

Like Wi-Fi access points, radio nodes are small with low profiles. An E-RAN platform offers a wide range of radio nodes for many different applications and mobile operator configurations. All models are powered by PoE+ (802.11at) Ethernet switch ports.

Installation is quick and easy using commonly available PoE+.

- 1. Pull a structured cable (CAT 5e or greater).
- 2. Attach the radio to wall or ceiling.
- 3. Connect Ethernet patch cords at both ends.

Radio Node Family

Deployment Process

Corning Enterprise Services offers systems integrators full facilitation for E-RAN installations. Our well-documented, structured, repeatable processes can make installations faster and easier.

Typical small cell deployment

Site Walk	Site Design and Approval	Site Installation	Commissioning	In-Service
-----------	--------------------------	-------------------	---------------	------------

DAS headend deployment

RF Design and Approval	Headend Installation	Commissioning	In-Service

Where is the services node hosted?

The services node is hosted in a local data center or telecom equipment room. It requires two Ethernet ports for internet backhaul to the core network and fronthaul to the radio nodes.

Is there a minimum number of radio nodes required in a building?

As few as one radio node can be deployed for a small public or commercial space. Generally, about one radio node per 12,000 square feet is recommended. For a typical small cell deployment, iBwave predictive designs based on a site walk should be done to determine final radio node quantities.

Should all the radio nodes in an E-RAN system be the same model?

No. Any radio node that has been qualified for an operator's network can be mixed and matched in an E-RAN system. For example, E-RAN can manage RN-310 (dual carrier LTE), RN-220 (frequency agile LTE), RN-320 (LTE-LAA), and RN-340 (dual carrier LTE, including FirstNet) radio nodes across multiple buildings.

Have more questions? Visit corning.com/eran today.

